# Summary 某个场景即某种 hit 与 miss 之比出现的概率 # Cues # Notes ## 投篮场景 ![image.png|800](https://imagehosting4picgo.oss-cn-beijing.aliyuncs.com/imagehosting/fix-dir%2Fpicgo%2Fpicgo-clipboard-images%2F2024%2F04%2F28%2F15-40-12-0b0a09f129a0874d74ed57039172d4b5-20240428154012-47260a.png) ### 投篮的散点图 ![image.png|1000](https://imagehosting4picgo.oss-cn-beijing.aliyuncs.com/imagehosting/fix-dir%2Fpicgo%2Fpicgo-clipboard-images%2F2024%2F04%2F28%2F00-35-41-89b30f183c7f24d9ee8f621678dbf063-20240428003540-e966bb.png) ![image.png|1000](https://imagehosting4picgo.oss-cn-beijing.aliyuncs.com/imagehosting/fix-dir%2Fpicgo%2Fpicgo-clipboard-images%2F2024%2F04%2F28%2F00-35-43-ff5ed89ad53968c8192c0c98d583aedb-20240428003542-f5528a.png) 横轴是样本序号 index,纵轴是观测到结果的话,散点图上应该只有两条横线,因为只有两种观测值,要么投篮投中,要么投篮不中, ### 投中的比投丢的 - 二项分布 本质上,我们好奇的是两根横线的长短之比,也就是中了几颗,不中几颗?所有的投中投丢比就构成了二项分布。二项分布的概率公式就可以帮助计算出某个场景即某种 hit 与 miss 之比出现的概率。