# 💡 Summary 例子:$X$ 是身高,$Y$ 是体重,$z$ 是此身高体重对应的人数/[[概率密度]] $X$和$Y$的联合分布可以想象成一座山,类似[[梯度下降]] - 方差 = 山体的**胖瘦宽窄** - 山顶越尖 → 方差越**小**(数据集中在均值附近) - 山顶越平 → 方差越**大**(数据分散) - [[相关系数]] = 山有多**扁**(-1到1,越接近±1越扁) - 山脊沿着 $y=x$ 方向延伸:[[正相关]] - 山脊沿着 $y=-x$ 方向延伸:负相关 - [[协方差]]和[[相关系数]]它们描述同一件事,只是单位不同 - 山体躺倒的**方向**(东北or西北) - 固定方差改变协方差其实就是相关性变了 [[边缘分布]]就是把山拍扁,压到一个切面上 [[条件分布]]就是把山取一个切面,不管其他部分 # 🧩 Cues [[协方差]] # 🪞Notes